Calcular y contar todos los divisores de 501.760.000 y los factores primos. Calculadora en línea

Los divisores del número 501.760.000. La importancia de la descomposición del número en factores primos

1. Realizar la descomposición del número 501.760.000 en factores primos:

La descomposición en factores primos de un número (descomposición factorial) = descomponer el número como un producto (multiplicación) de uno o varios números primos.


501.760.000 = 214 × 54 × 72
501.760.000 no es un numero primo sino un numero compuesto.


* Los números naturales que son divisibles solo por 1 y por ellos mismos se llaman números primos. Un número primo tiene exactamente dos divisores: el 1 y él mismo.
* Un número compuesto es un número natural que tiene al menos un divisor diferente de 1 y él mismo.


¿Cómo contar el número de divisores de un número?

Si un número N se descompone en factores primos como:
N = am × bk × cz
donde a, b, c son los factores primos; m, k, z son sus exponentes, números naturales, ....


Entonces el número de divisores del número N se puede calcular de esta manera:
n = (m + 1) × (k + 1) × (z + 1)


En nuestro caso, el número de divisores se calcula como:

n = (14 + 1) × (4 + 1) × (2 + 1) = 15 × 5 × 3 = 225

Pero para calcular realmente los divisores, vea a continuación...

2. Multiplica los factores primos del número 501.760.000

Multiplica los factores primos involucrados en la descomposición en factores primos del número en todas sus combinaciones únicas, que dan resultados diferentes.


Considere también los exponentes de estos factores primos.

También considere el número 1 cuando construya la lista de divisores. Todos los números son divisibles por 1.


Todos los divisores se enumeran a continuación, en orden ascendente

La lista de divisores:

Ni primo ni compuesto = 1
factor primo = 2
22 = 4
factor primo = 5
factor primo = 7
23 = 8
2 × 5 = 10
2 × 7 = 14
24 = 16
22 × 5 = 20
52 = 25
22 × 7 = 28
25 = 32
5 × 7 = 35
23 × 5 = 40
72 = 49
2 × 52 = 50
23 × 7 = 56
26 = 64
2 × 5 × 7 = 70
24 × 5 = 80
2 × 72 = 98
22 × 52 = 100
24 × 7 = 112
53 = 125
27 = 128
22 × 5 × 7 = 140
25 × 5 = 160
52 × 7 = 175
22 × 72 = 196
23 × 52 = 200
25 × 7 = 224
5 × 72 = 245
2 × 53 = 250
28 = 256
23 × 5 × 7 = 280
26 × 5 = 320
2 × 52 × 7 = 350
23 × 72 = 392
24 × 52 = 400
26 × 7 = 448
2 × 5 × 72 = 490
22 × 53 = 500
29 = 512
24 × 5 × 7 = 560
54 = 625
27 × 5 = 640
22 × 52 × 7 = 700
24 × 72 = 784
25 × 52 = 800
53 × 7 = 875
27 × 7 = 896
22 × 5 × 72 = 980
23 × 53 = 1.000
210 = 1.024
25 × 5 × 7 = 1.120
52 × 72 = 1.225
2 × 54 = 1.250
28 × 5 = 1.280
23 × 52 × 7 = 1.400
25 × 72 = 1.568
26 × 52 = 1.600
2 × 53 × 7 = 1.750
28 × 7 = 1.792
23 × 5 × 72 = 1.960
24 × 53 = 2.000
211 = 2.048
26 × 5 × 7 = 2.240
2 × 52 × 72 = 2.450
22 × 54 = 2.500
29 × 5 = 2.560
24 × 52 × 7 = 2.800
26 × 72 = 3.136
27 × 52 = 3.200
22 × 53 × 7 = 3.500
29 × 7 = 3.584
24 × 5 × 72 = 3.920
25 × 53 = 4.000
212 = 4.096
54 × 7 = 4.375
27 × 5 × 7 = 4.480
22 × 52 × 72 = 4.900
23 × 54 = 5.000
210 × 5 = 5.120
25 × 52 × 7 = 5.600
53 × 72 = 6.125
27 × 72 = 6.272
28 × 52 = 6.400
23 × 53 × 7 = 7.000
210 × 7 = 7.168
25 × 5 × 72 = 7.840
26 × 53 = 8.000
213 = 8.192
2 × 54 × 7 = 8.750
28 × 5 × 7 = 8.960
23 × 52 × 72 = 9.800
24 × 54 = 10.000
211 × 5 = 10.240
26 × 52 × 7 = 11.200
2 × 53 × 72 = 12.250
28 × 72 = 12.544
29 × 52 = 12.800
24 × 53 × 7 = 14.000
211 × 7 = 14.336
26 × 5 × 72 = 15.680
27 × 53 = 16.000
214 = 16.384
22 × 54 × 7 = 17.500
29 × 5 × 7 = 17.920
24 × 52 × 72 = 19.600
25 × 54 = 20.000
212 × 5 = 20.480
Esta lista continúa más abajo...

... Esta lista continúa desde arriba
27 × 52 × 7 = 22.400
22 × 53 × 72 = 24.500
29 × 72 = 25.088
210 × 52 = 25.600
25 × 53 × 7 = 28.000
212 × 7 = 28.672
54 × 72 = 30.625
27 × 5 × 72 = 31.360
28 × 53 = 32.000
23 × 54 × 7 = 35.000
210 × 5 × 7 = 35.840
25 × 52 × 72 = 39.200
26 × 54 = 40.000
213 × 5 = 40.960
28 × 52 × 7 = 44.800
23 × 53 × 72 = 49.000
210 × 72 = 50.176
211 × 52 = 51.200
26 × 53 × 7 = 56.000
213 × 7 = 57.344
2 × 54 × 72 = 61.250
28 × 5 × 72 = 62.720
29 × 53 = 64.000
24 × 54 × 7 = 70.000
211 × 5 × 7 = 71.680
26 × 52 × 72 = 78.400
27 × 54 = 80.000
214 × 5 = 81.920
29 × 52 × 7 = 89.600
24 × 53 × 72 = 98.000
211 × 72 = 100.352
212 × 52 = 102.400
27 × 53 × 7 = 112.000
214 × 7 = 114.688
22 × 54 × 72 = 122.500
29 × 5 × 72 = 125.440
210 × 53 = 128.000
25 × 54 × 7 = 140.000
212 × 5 × 7 = 143.360
27 × 52 × 72 = 156.800
28 × 54 = 160.000
210 × 52 × 7 = 179.200
25 × 53 × 72 = 196.000
212 × 72 = 200.704
213 × 52 = 204.800
28 × 53 × 7 = 224.000
23 × 54 × 72 = 245.000
210 × 5 × 72 = 250.880
211 × 53 = 256.000
26 × 54 × 7 = 280.000
213 × 5 × 7 = 286.720
28 × 52 × 72 = 313.600
29 × 54 = 320.000
211 × 52 × 7 = 358.400
26 × 53 × 72 = 392.000
213 × 72 = 401.408
214 × 52 = 409.600
29 × 53 × 7 = 448.000
24 × 54 × 72 = 490.000
211 × 5 × 72 = 501.760
212 × 53 = 512.000
27 × 54 × 7 = 560.000
214 × 5 × 7 = 573.440
29 × 52 × 72 = 627.200
210 × 54 = 640.000
212 × 52 × 7 = 716.800
27 × 53 × 72 = 784.000
214 × 72 = 802.816
210 × 53 × 7 = 896.000
25 × 54 × 72 = 980.000
212 × 5 × 72 = 1.003.520
213 × 53 = 1.024.000
28 × 54 × 7 = 1.120.000
210 × 52 × 72 = 1.254.400
211 × 54 = 1.280.000
213 × 52 × 7 = 1.433.600
28 × 53 × 72 = 1.568.000
211 × 53 × 7 = 1.792.000
26 × 54 × 72 = 1.960.000
213 × 5 × 72 = 2.007.040
214 × 53 = 2.048.000
29 × 54 × 7 = 2.240.000
211 × 52 × 72 = 2.508.800
212 × 54 = 2.560.000
214 × 52 × 7 = 2.867.200
29 × 53 × 72 = 3.136.000
212 × 53 × 7 = 3.584.000
27 × 54 × 72 = 3.920.000
214 × 5 × 72 = 4.014.080
210 × 54 × 7 = 4.480.000
212 × 52 × 72 = 5.017.600
213 × 54 = 5.120.000
210 × 53 × 72 = 6.272.000
213 × 53 × 7 = 7.168.000
28 × 54 × 72 = 7.840.000
211 × 54 × 7 = 8.960.000
213 × 52 × 72 = 10.035.200
214 × 54 = 10.240.000
211 × 53 × 72 = 12.544.000
214 × 53 × 7 = 14.336.000
29 × 54 × 72 = 15.680.000
212 × 54 × 7 = 17.920.000
214 × 52 × 72 = 20.070.400
212 × 53 × 72 = 25.088.000
210 × 54 × 72 = 31.360.000
213 × 54 × 7 = 35.840.000
213 × 53 × 72 = 50.176.000
211 × 54 × 72 = 62.720.000
214 × 54 × 7 = 71.680.000
214 × 53 × 72 = 100.352.000
212 × 54 × 72 = 125.440.000
213 × 54 × 72 = 250.880.000
214 × 54 × 72 = 501.760.000

La respuesta final:
(desplazarse hacia abajo)

501.760.000 tiene 225 divisores:
1; 2; 4; 5; 7; 8; 10; 14; 16; 20; 25; 28; 32; 35; 40; 49; 50; 56; 64; 70; 80; 98; 100; 112; 125; 128; 140; 160; 175; 196; 200; 224; 245; 250; 256; 280; 320; 350; 392; 400; 448; 490; 500; 512; 560; 625; 640; 700; 784; 800; 875; 896; 980; 1.000; 1.024; 1.120; 1.225; 1.250; 1.280; 1.400; 1.568; 1.600; 1.750; 1.792; 1.960; 2.000; 2.048; 2.240; 2.450; 2.500; 2.560; 2.800; 3.136; 3.200; 3.500; 3.584; 3.920; 4.000; 4.096; 4.375; 4.480; 4.900; 5.000; 5.120; 5.600; 6.125; 6.272; 6.400; 7.000; 7.168; 7.840; 8.000; 8.192; 8.750; 8.960; 9.800; 10.000; 10.240; 11.200; 12.250; 12.544; 12.800; 14.000; 14.336; 15.680; 16.000; 16.384; 17.500; 17.920; 19.600; 20.000; 20.480; 22.400; 24.500; 25.088; 25.600; 28.000; 28.672; 30.625; 31.360; 32.000; 35.000; 35.840; 39.200; 40.000; 40.960; 44.800; 49.000; 50.176; 51.200; 56.000; 57.344; 61.250; 62.720; 64.000; 70.000; 71.680; 78.400; 80.000; 81.920; 89.600; 98.000; 100.352; 102.400; 112.000; 114.688; 122.500; 125.440; 128.000; 140.000; 143.360; 156.800; 160.000; 179.200; 196.000; 200.704; 204.800; 224.000; 245.000; 250.880; 256.000; 280.000; 286.720; 313.600; 320.000; 358.400; 392.000; 401.408; 409.600; 448.000; 490.000; 501.760; 512.000; 560.000; 573.440; 627.200; 640.000; 716.800; 784.000; 802.816; 896.000; 980.000; 1.003.520; 1.024.000; 1.120.000; 1.254.400; 1.280.000; 1.433.600; 1.568.000; 1.792.000; 1.960.000; 2.007.040; 2.048.000; 2.240.000; 2.508.800; 2.560.000; 2.867.200; 3.136.000; 3.584.000; 3.920.000; 4.014.080; 4.480.000; 5.017.600; 5.120.000; 6.272.000; 7.168.000; 7.840.000; 8.960.000; 10.035.200; 10.240.000; 12.544.000; 14.336.000; 15.680.000; 17.920.000; 20.070.400; 25.088.000; 31.360.000; 35.840.000; 50.176.000; 62.720.000; 71.680.000; 100.352.000; 125.440.000; 250.880.000 y 501.760.000
de los cuales 3 factores primos: 2; 5 y 7

Una forma rápida de encontrar los divisores de un número es descomponerlo en factores primos.


Luego multiplica los factores primos y sus exponentes, si los hay, en todas sus diferentes combinaciones.


Divisores, divisores comunes, el máximo común divisor, MCD

  • Si el número "t" es un divisor del número "a", entonces en la descomposición en factores primos de "t" solo encontraremos factores primos que también ocurren en la descomposición en factores primos de "a".
  • Si hay exponentes involucrados, el valor máximo de un exponente para cualquier base de una potencia que se encuentra en la descomposición en factores primos de "t" es como máximo igual al exponente de la misma base que está involucrado en la descomposición en factores primos de "a".
  • Nota: 23 = 2 × 2 × 2 = 8. Decimos que 2 fue elevado a la potencia de 3, o más simple, 2 elevado a 3. En este ejemplo, 3 es el exponente y 2 es la base. El exponente indica cuántas veces se multiplica la base por sí misma. 23 es la potencia y 8 es el valor de la potencia.
  • Por ejemplo, 12 es un divisor de 120 - el resto es cero al dividir 120 por 12.
  • Miremos la descomposición en factores primos de ambos números y observemos las bases y los exponentes de los factores primos que ocurren en la descomposición en factores primos de ambos números:
  • 12 = 2 × 2 × 3 = 22 × 3
  • 120 = 2 × 2 × 2 × 3 × 5 = 23 × 3 × 5
  • 120 contiene todos los factores primos de 12, y todos los exponentes de sus bases son mayores que los de 12.
  • Si "t" es un divisor común de "a" y "b", entonces la descomposición en factores primos de "t" contiene solo los factores primos comunes involucrados en las descomposición en factores primos de "a" y "b".
  • Si hay exponentes involucrados: el valor máximo de un exponente de cualquier base de una potencia que se encuentra en la factorización prima del número "t" - es como máximo igual al mínimo de los exponentes de la misma base que ocurre en el descomposición en factores primos de los números "a" y "b".
  • Por ejemplo, 12 es el divisor común de 48 y 360.
  • El resto es cero al dividir 48 o 360 por 12.
  • Aquí están las descomposición en factores primos de los tres números, 12, 48 y 360:
  • 12 = 22 × 3
  • 48 = 24 × 3
  • 360 = 23 × 32 × 5
  • Ten en cuenta que 48 y 360 tienen más divisores: 2, 3, 4, 6, 8, 12, 24. Entre ellos, 24 es el máximo común divisor, mcd, de 48 y 360.
  • El máximo común divisor, mcd, de dos números, "a" y "b", es el producto de todos los factores primos comunes involucrados en las descomposición en factores primos de "a" y "b", tomados por los exponentes más bajos.
  • Con base en esta regla, se calcula el máximo común divisor, mcd, de varios números, como se muestra en el siguiente ejemplo...
  • mcd (1.260; 3.024; 5.544) = ?
  • 1.260 = 22 × 32
  • 3.024 = 24 × 32 × 7
  • 5.544 = 23 × 32 × 7 × 11
  • Los factores primos comunes son:
  • 2 - su exponente más bajo es: min. (2; 3; 4) = 2
  • 3 - su exponente más bajo es: min. (2; 2; 2) = 2
  • mcd (1.260; 3.024; 5.544) = 22 × 32 = 252
  • Números que son primos entre sí (coprimos, primos relativos):
  • Si dos números "a" y "b" no tienen más divisores comunes que 1, mcd (a; b) = 1, entonces los números "a" y "b" se llaman primos entre sí (coprimos, primos relativos).
  • Divisores del MCD
  • Si "a" y "b" no son primos entre sí, entonces todo divisor común de "a" y "b" es también un divisor del máximo común divisor, mcd, de "a" y "b".