Calcular y contar todos los divisores comunes de los dos números 64.422.540 y 0. Calculadora en línea

¿Los divisores comunes de los números 64.422.540 y 0?

Los divisores comunes de los números 64.422.540 y 0 son todos los divisores de su 'máximo común divisor', mcd


Calcular el máximo común divisor, mcd:

El cero es divisible por cualquier número que no sea cero (no queda resto al dividirlo por otro número).

El máximo divisor del número 64.422.540 es el número mismo.


⇒ mcd (64.422.540; 0) = 64.422.540




Para encontrar todos los divisores del 'mcd', necesitamos descomponerlo en factores primos.

La descomposición en factores primos de un número (descomposición factorial) = descomponer el número como un producto (multiplicación) de uno o varios números primos.


64.422.540 = 22 × 34 × 5 × 7 × 13 × 19 × 23
64.422.540 no es un numero primo sino un numero compuesto.




¿Cómo contar el número de divisores de un número?

  • Si un número N se descompone en factores primos como:
    N = am × bk × cz
    donde a, b, c son los factores primos; m, k, z son sus exponentes, números naturales, ....
  • ...
  • Entonces el número de divisores del número N se puede calcular de esta manera:
    n = (m + 1) × (k + 1) × (z + 1)
  • ...
  • En nuestro caso, el número de divisores se calcula como:
  • n = (2 + 1) × (4 + 1) × (1 + 1) × (1 + 1) × (1 + 1) × (1 + 1) × (1 + 1) = 3 × 5 × 2 × 2 × 2 × 2 × 2 = 480

Pero para calcular realmente los divisores, vea a continuación...

3. Multiplica los factores primos del 'mcd':

Multiplica los factores primos involucrados en la descomposición en factores primos del MCD en todas sus combinaciones únicas, que dan resultados diferentes.


Considere también los exponentes de los factores primos (ejemplo: 32 = 3 × 3 = 9).


También agregue 1 a la lista de divisores. todos los numeros son divisibles por 1.


Todos los divisores se enumeran a continuación, en orden ascendente

La lista de divisores:

Ni primo ni compuesto = 1
factor primo = 2
factor primo = 3
22 = 4
factor primo = 5
2 × 3 = 6
factor primo = 7
32 = 9
2 × 5 = 10
22 × 3 = 12
factor primo = 13
2 × 7 = 14
3 × 5 = 15
2 × 32 = 18
factor primo = 19
22 × 5 = 20
3 × 7 = 21
factor primo = 23
2 × 13 = 26
33 = 27
22 × 7 = 28
2 × 3 × 5 = 30
5 × 7 = 35
22 × 32 = 36
2 × 19 = 38
3 × 13 = 39
2 × 3 × 7 = 42
32 × 5 = 45
2 × 23 = 46
22 × 13 = 52
2 × 33 = 54
3 × 19 = 57
22 × 3 × 5 = 60
32 × 7 = 63
5 × 13 = 65
3 × 23 = 69
2 × 5 × 7 = 70
22 × 19 = 76
2 × 3 × 13 = 78
34 = 81
22 × 3 × 7 = 84
2 × 32 × 5 = 90
7 × 13 = 91
22 × 23 = 92
5 × 19 = 95
3 × 5 × 7 = 105
22 × 33 = 108
2 × 3 × 19 = 114
5 × 23 = 115
32 × 13 = 117
2 × 32 × 7 = 126
2 × 5 × 13 = 130
7 × 19 = 133
33 × 5 = 135
2 × 3 × 23 = 138
22 × 5 × 7 = 140
22 × 3 × 13 = 156
7 × 23 = 161
2 × 34 = 162
32 × 19 = 171
22 × 32 × 5 = 180
2 × 7 × 13 = 182
33 × 7 = 189
2 × 5 × 19 = 190
3 × 5 × 13 = 195
32 × 23 = 207
2 × 3 × 5 × 7 = 210
22 × 3 × 19 = 228
2 × 5 × 23 = 230
2 × 32 × 13 = 234
13 × 19 = 247
22 × 32 × 7 = 252
22 × 5 × 13 = 260
2 × 7 × 19 = 266
2 × 33 × 5 = 270
3 × 7 × 13 = 273
22 × 3 × 23 = 276
3 × 5 × 19 = 285
13 × 23 = 299
32 × 5 × 7 = 315
2 × 7 × 23 = 322
22 × 34 = 324
2 × 32 × 19 = 342
3 × 5 × 23 = 345
33 × 13 = 351
22 × 7 × 13 = 364
2 × 33 × 7 = 378
22 × 5 × 19 = 380
2 × 3 × 5 × 13 = 390
3 × 7 × 19 = 399
34 × 5 = 405
2 × 32 × 23 = 414
22 × 3 × 5 × 7 = 420
19 × 23 = 437
5 × 7 × 13 = 455
22 × 5 × 23 = 460
22 × 32 × 13 = 468
3 × 7 × 23 = 483
2 × 13 × 19 = 494
33 × 19 = 513
22 × 7 × 19 = 532
22 × 33 × 5 = 540
2 × 3 × 7 × 13 = 546
34 × 7 = 567
2 × 3 × 5 × 19 = 570
32 × 5 × 13 = 585
2 × 13 × 23 = 598
33 × 23 = 621
2 × 32 × 5 × 7 = 630
22 × 7 × 23 = 644
5 × 7 × 19 = 665
22 × 32 × 19 = 684
2 × 3 × 5 × 23 = 690
2 × 33 × 13 = 702
3 × 13 × 19 = 741
22 × 33 × 7 = 756
22 × 3 × 5 × 13 = 780
2 × 3 × 7 × 19 = 798
5 × 7 × 23 = 805
2 × 34 × 5 = 810
32 × 7 × 13 = 819
22 × 32 × 23 = 828
32 × 5 × 19 = 855
2 × 19 × 23 = 874
3 × 13 × 23 = 897
2 × 5 × 7 × 13 = 910
33 × 5 × 7 = 945
2 × 3 × 7 × 23 = 966
22 × 13 × 19 = 988
2 × 33 × 19 = 1.026
32 × 5 × 23 = 1.035
34 × 13 = 1.053
22 × 3 × 7 × 13 = 1.092
2 × 34 × 7 = 1.134
22 × 3 × 5 × 19 = 1.140
2 × 32 × 5 × 13 = 1.170
22 × 13 × 23 = 1.196
32 × 7 × 19 = 1.197
5 × 13 × 19 = 1.235
2 × 33 × 23 = 1.242
22 × 32 × 5 × 7 = 1.260
3 × 19 × 23 = 1.311
2 × 5 × 7 × 19 = 1.330
3 × 5 × 7 × 13 = 1.365
22 × 3 × 5 × 23 = 1.380
22 × 33 × 13 = 1.404
32 × 7 × 23 = 1.449
2 × 3 × 13 × 19 = 1.482
5 × 13 × 23 = 1.495
34 × 19 = 1.539
22 × 3 × 7 × 19 = 1.596
2 × 5 × 7 × 23 = 1.610
22 × 34 × 5 = 1.620
2 × 32 × 7 × 13 = 1.638
2 × 32 × 5 × 19 = 1.710
7 × 13 × 19 = 1.729
22 × 19 × 23 = 1.748
33 × 5 × 13 = 1.755
2 × 3 × 13 × 23 = 1.794
22 × 5 × 7 × 13 = 1.820
34 × 23 = 1.863
2 × 33 × 5 × 7 = 1.890
22 × 3 × 7 × 23 = 1.932
3 × 5 × 7 × 19 = 1.995
22 × 33 × 19 = 2.052
2 × 32 × 5 × 23 = 2.070
7 × 13 × 23 = 2.093
2 × 34 × 13 = 2.106
5 × 19 × 23 = 2.185
32 × 13 × 19 = 2.223
22 × 34 × 7 = 2.268
22 × 32 × 5 × 13 = 2.340
2 × 32 × 7 × 19 = 2.394
3 × 5 × 7 × 23 = 2.415
33 × 7 × 13 = 2.457
2 × 5 × 13 × 19 = 2.470
22 × 33 × 23 = 2.484
33 × 5 × 19 = 2.565
2 × 3 × 19 × 23 = 2.622
22 × 5 × 7 × 19 = 2.660
32 × 13 × 23 = 2.691
2 × 3 × 5 × 7 × 13 = 2.730
34 × 5 × 7 = 2.835
2 × 32 × 7 × 23 = 2.898
22 × 3 × 13 × 19 = 2.964
2 × 5 × 13 × 23 = 2.990
7 × 19 × 23 = 3.059
2 × 34 × 19 = 3.078
33 × 5 × 23 = 3.105
22 × 5 × 7 × 23 = 3.220
22 × 32 × 7 × 13 = 3.276
22 × 32 × 5 × 19 = 3.420
2 × 7 × 13 × 19 = 3.458
2 × 33 × 5 × 13 = 3.510
22 × 3 × 13 × 23 = 3.588
33 × 7 × 19 = 3.591
3 × 5 × 13 × 19 = 3.705
2 × 34 × 23 = 3.726
22 × 33 × 5 × 7 = 3.780
32 × 19 × 23 = 3.933
2 × 3 × 5 × 7 × 19 = 3.990
32 × 5 × 7 × 13 = 4.095
22 × 32 × 5 × 23 = 4.140
2 × 7 × 13 × 23 = 4.186
22 × 34 × 13 = 4.212
33 × 7 × 23 = 4.347
2 × 5 × 19 × 23 = 4.370
2 × 32 × 13 × 19 = 4.446
3 × 5 × 13 × 23 = 4.485
22 × 32 × 7 × 19 = 4.788
2 × 3 × 5 × 7 × 23 = 4.830
2 × 33 × 7 × 13 = 4.914
22 × 5 × 13 × 19 = 4.940
2 × 33 × 5 × 19 = 5.130
3 × 7 × 13 × 19 = 5.187
22 × 3 × 19 × 23 = 5.244
34 × 5 × 13 = 5.265
2 × 32 × 13 × 23 = 5.382
22 × 3 × 5 × 7 × 13 = 5.460
2 × 34 × 5 × 7 = 5.670
13 × 19 × 23 = 5.681
22 × 32 × 7 × 23 = 5.796
22 × 5 × 13 × 23 = 5.980
32 × 5 × 7 × 19 = 5.985
2 × 7 × 19 × 23 = 6.118
22 × 34 × 19 = 6.156
2 × 33 × 5 × 23 = 6.210
3 × 7 × 13 × 23 = 6.279
3 × 5 × 19 × 23 = 6.555
33 × 13 × 19 = 6.669
22 × 7 × 13 × 19 = 6.916
22 × 33 × 5 × 13 = 7.020
2 × 33 × 7 × 19 = 7.182
32 × 5 × 7 × 23 = 7.245
34 × 7 × 13 = 7.371
2 × 3 × 5 × 13 × 19 = 7.410
22 × 34 × 23 = 7.452
34 × 5 × 19 = 7.695
2 × 32 × 19 × 23 = 7.866
22 × 3 × 5 × 7 × 19 = 7.980
Esta lista continúa más abajo...

... Esta lista continúa desde arriba
33 × 13 × 23 = 8.073
2 × 32 × 5 × 7 × 13 = 8.190
22 × 7 × 13 × 23 = 8.372
5 × 7 × 13 × 19 = 8.645
2 × 33 × 7 × 23 = 8.694
22 × 5 × 19 × 23 = 8.740
22 × 32 × 13 × 19 = 8.892
2 × 3 × 5 × 13 × 23 = 8.970
3 × 7 × 19 × 23 = 9.177
34 × 5 × 23 = 9.315
22 × 3 × 5 × 7 × 23 = 9.660
22 × 33 × 7 × 13 = 9.828
22 × 33 × 5 × 19 = 10.260
2 × 3 × 7 × 13 × 19 = 10.374
5 × 7 × 13 × 23 = 10.465
2 × 34 × 5 × 13 = 10.530
22 × 32 × 13 × 23 = 10.764
34 × 7 × 19 = 10.773
32 × 5 × 13 × 19 = 11.115
22 × 34 × 5 × 7 = 11.340
2 × 13 × 19 × 23 = 11.362
33 × 19 × 23 = 11.799
2 × 32 × 5 × 7 × 19 = 11.970
22 × 7 × 19 × 23 = 12.236
33 × 5 × 7 × 13 = 12.285
22 × 33 × 5 × 23 = 12.420
2 × 3 × 7 × 13 × 23 = 12.558
34 × 7 × 23 = 13.041
2 × 3 × 5 × 19 × 23 = 13.110
2 × 33 × 13 × 19 = 13.338
32 × 5 × 13 × 23 = 13.455
22 × 33 × 7 × 19 = 14.364
2 × 32 × 5 × 7 × 23 = 14.490
2 × 34 × 7 × 13 = 14.742
22 × 3 × 5 × 13 × 19 = 14.820
5 × 7 × 19 × 23 = 15.295
2 × 34 × 5 × 19 = 15.390
32 × 7 × 13 × 19 = 15.561
22 × 32 × 19 × 23 = 15.732
2 × 33 × 13 × 23 = 16.146
22 × 32 × 5 × 7 × 13 = 16.380
3 × 13 × 19 × 23 = 17.043
2 × 5 × 7 × 13 × 19 = 17.290
22 × 33 × 7 × 23 = 17.388
22 × 3 × 5 × 13 × 23 = 17.940
33 × 5 × 7 × 19 = 17.955
2 × 3 × 7 × 19 × 23 = 18.354
2 × 34 × 5 × 23 = 18.630
32 × 7 × 13 × 23 = 18.837
32 × 5 × 19 × 23 = 19.665
34 × 13 × 19 = 20.007
22 × 3 × 7 × 13 × 19 = 20.748
2 × 5 × 7 × 13 × 23 = 20.930
22 × 34 × 5 × 13 = 21.060
2 × 34 × 7 × 19 = 21.546
33 × 5 × 7 × 23 = 21.735
2 × 32 × 5 × 13 × 19 = 22.230
22 × 13 × 19 × 23 = 22.724
2 × 33 × 19 × 23 = 23.598
22 × 32 × 5 × 7 × 19 = 23.940
34 × 13 × 23 = 24.219
2 × 33 × 5 × 7 × 13 = 24.570
22 × 3 × 7 × 13 × 23 = 25.116
3 × 5 × 7 × 13 × 19 = 25.935
2 × 34 × 7 × 23 = 26.082
22 × 3 × 5 × 19 × 23 = 26.220
22 × 33 × 13 × 19 = 26.676
2 × 32 × 5 × 13 × 23 = 26.910
32 × 7 × 19 × 23 = 27.531
5 × 13 × 19 × 23 = 28.405
22 × 32 × 5 × 7 × 23 = 28.980
22 × 34 × 7 × 13 = 29.484
2 × 5 × 7 × 19 × 23 = 30.590
22 × 34 × 5 × 19 = 30.780
2 × 32 × 7 × 13 × 19 = 31.122
3 × 5 × 7 × 13 × 23 = 31.395
22 × 33 × 13 × 23 = 32.292
33 × 5 × 13 × 19 = 33.345
2 × 3 × 13 × 19 × 23 = 34.086
22 × 5 × 7 × 13 × 19 = 34.580
34 × 19 × 23 = 35.397
2 × 33 × 5 × 7 × 19 = 35.910
22 × 3 × 7 × 19 × 23 = 36.708
34 × 5 × 7 × 13 = 36.855
22 × 34 × 5 × 23 = 37.260
2 × 32 × 7 × 13 × 23 = 37.674
2 × 32 × 5 × 19 × 23 = 39.330
7 × 13 × 19 × 23 = 39.767
2 × 34 × 13 × 19 = 40.014
33 × 5 × 13 × 23 = 40.365
22 × 5 × 7 × 13 × 23 = 41.860
22 × 34 × 7 × 19 = 43.092
2 × 33 × 5 × 7 × 23 = 43.470
22 × 32 × 5 × 13 × 19 = 44.460
3 × 5 × 7 × 19 × 23 = 45.885
33 × 7 × 13 × 19 = 46.683
22 × 33 × 19 × 23 = 47.196
2 × 34 × 13 × 23 = 48.438
22 × 33 × 5 × 7 × 13 = 49.140
32 × 13 × 19 × 23 = 51.129
2 × 3 × 5 × 7 × 13 × 19 = 51.870
22 × 34 × 7 × 23 = 52.164
22 × 32 × 5 × 13 × 23 = 53.820
34 × 5 × 7 × 19 = 53.865
2 × 32 × 7 × 19 × 23 = 55.062
33 × 7 × 13 × 23 = 56.511
2 × 5 × 13 × 19 × 23 = 56.810
33 × 5 × 19 × 23 = 58.995
22 × 5 × 7 × 19 × 23 = 61.180
22 × 32 × 7 × 13 × 19 = 62.244
2 × 3 × 5 × 7 × 13 × 23 = 62.790
34 × 5 × 7 × 23 = 65.205
2 × 33 × 5 × 13 × 19 = 66.690
22 × 3 × 13 × 19 × 23 = 68.172
2 × 34 × 19 × 23 = 70.794
22 × 33 × 5 × 7 × 19 = 71.820
2 × 34 × 5 × 7 × 13 = 73.710
22 × 32 × 7 × 13 × 23 = 75.348
32 × 5 × 7 × 13 × 19 = 77.805
22 × 32 × 5 × 19 × 23 = 78.660
2 × 7 × 13 × 19 × 23 = 79.534
22 × 34 × 13 × 19 = 80.028
2 × 33 × 5 × 13 × 23 = 80.730
33 × 7 × 19 × 23 = 82.593
3 × 5 × 13 × 19 × 23 = 85.215
22 × 33 × 5 × 7 × 23 = 86.940
2 × 3 × 5 × 7 × 19 × 23 = 91.770
2 × 33 × 7 × 13 × 19 = 93.366
32 × 5 × 7 × 13 × 23 = 94.185
22 × 34 × 13 × 23 = 96.876
34 × 5 × 13 × 19 = 100.035
2 × 32 × 13 × 19 × 23 = 102.258
22 × 3 × 5 × 7 × 13 × 19 = 103.740
2 × 34 × 5 × 7 × 19 = 107.730
22 × 32 × 7 × 19 × 23 = 110.124
2 × 33 × 7 × 13 × 23 = 113.022
22 × 5 × 13 × 19 × 23 = 113.620
2 × 33 × 5 × 19 × 23 = 117.990
3 × 7 × 13 × 19 × 23 = 119.301
34 × 5 × 13 × 23 = 121.095
22 × 3 × 5 × 7 × 13 × 23 = 125.580
2 × 34 × 5 × 7 × 23 = 130.410
22 × 33 × 5 × 13 × 19 = 133.380
32 × 5 × 7 × 19 × 23 = 137.655
34 × 7 × 13 × 19 = 140.049
22 × 34 × 19 × 23 = 141.588
22 × 34 × 5 × 7 × 13 = 147.420
33 × 13 × 19 × 23 = 153.387
2 × 32 × 5 × 7 × 13 × 19 = 155.610
22 × 7 × 13 × 19 × 23 = 159.068
22 × 33 × 5 × 13 × 23 = 161.460
2 × 33 × 7 × 19 × 23 = 165.186
34 × 7 × 13 × 23 = 169.533
2 × 3 × 5 × 13 × 19 × 23 = 170.430
34 × 5 × 19 × 23 = 176.985
22 × 3 × 5 × 7 × 19 × 23 = 183.540
22 × 33 × 7 × 13 × 19 = 186.732
2 × 32 × 5 × 7 × 13 × 23 = 188.370
5 × 7 × 13 × 19 × 23 = 198.835
2 × 34 × 5 × 13 × 19 = 200.070
22 × 32 × 13 × 19 × 23 = 204.516
22 × 34 × 5 × 7 × 19 = 215.460
22 × 33 × 7 × 13 × 23 = 226.044
33 × 5 × 7 × 13 × 19 = 233.415
22 × 33 × 5 × 19 × 23 = 235.980
2 × 3 × 7 × 13 × 19 × 23 = 238.602
2 × 34 × 5 × 13 × 23 = 242.190
34 × 7 × 19 × 23 = 247.779
32 × 5 × 13 × 19 × 23 = 255.645
22 × 34 × 5 × 7 × 23 = 260.820
2 × 32 × 5 × 7 × 19 × 23 = 275.310
2 × 34 × 7 × 13 × 19 = 280.098
33 × 5 × 7 × 13 × 23 = 282.555
2 × 33 × 13 × 19 × 23 = 306.774
22 × 32 × 5 × 7 × 13 × 19 = 311.220
22 × 33 × 7 × 19 × 23 = 330.372
2 × 34 × 7 × 13 × 23 = 339.066
22 × 3 × 5 × 13 × 19 × 23 = 340.860
2 × 34 × 5 × 19 × 23 = 353.970
32 × 7 × 13 × 19 × 23 = 357.903
22 × 32 × 5 × 7 × 13 × 23 = 376.740
2 × 5 × 7 × 13 × 19 × 23 = 397.670
22 × 34 × 5 × 13 × 19 = 400.140
33 × 5 × 7 × 19 × 23 = 412.965
34 × 13 × 19 × 23 = 460.161
2 × 33 × 5 × 7 × 13 × 19 = 466.830
22 × 3 × 7 × 13 × 19 × 23 = 477.204
22 × 34 × 5 × 13 × 23 = 484.380
2 × 34 × 7 × 19 × 23 = 495.558
2 × 32 × 5 × 13 × 19 × 23 = 511.290
22 × 32 × 5 × 7 × 19 × 23 = 550.620
22 × 34 × 7 × 13 × 19 = 560.196
2 × 33 × 5 × 7 × 13 × 23 = 565.110
3 × 5 × 7 × 13 × 19 × 23 = 596.505
22 × 33 × 13 × 19 × 23 = 613.548
22 × 34 × 7 × 13 × 23 = 678.132
34 × 5 × 7 × 13 × 19 = 700.245
22 × 34 × 5 × 19 × 23 = 707.940
2 × 32 × 7 × 13 × 19 × 23 = 715.806
33 × 5 × 13 × 19 × 23 = 766.935
22 × 5 × 7 × 13 × 19 × 23 = 795.340
2 × 33 × 5 × 7 × 19 × 23 = 825.930
34 × 5 × 7 × 13 × 23 = 847.665
2 × 34 × 13 × 19 × 23 = 920.322
22 × 33 × 5 × 7 × 13 × 19 = 933.660
22 × 34 × 7 × 19 × 23 = 991.116
22 × 32 × 5 × 13 × 19 × 23 = 1.022.580
33 × 7 × 13 × 19 × 23 = 1.073.709
22 × 33 × 5 × 7 × 13 × 23 = 1.130.220
2 × 3 × 5 × 7 × 13 × 19 × 23 = 1.193.010
34 × 5 × 7 × 19 × 23 = 1.238.895
2 × 34 × 5 × 7 × 13 × 19 = 1.400.490
22 × 32 × 7 × 13 × 19 × 23 = 1.431.612
2 × 33 × 5 × 13 × 19 × 23 = 1.533.870
22 × 33 × 5 × 7 × 19 × 23 = 1.651.860
2 × 34 × 5 × 7 × 13 × 23 = 1.695.330
32 × 5 × 7 × 13 × 19 × 23 = 1.789.515
22 × 34 × 13 × 19 × 23 = 1.840.644
2 × 33 × 7 × 13 × 19 × 23 = 2.147.418
34 × 5 × 13 × 19 × 23 = 2.300.805
22 × 3 × 5 × 7 × 13 × 19 × 23 = 2.386.020
2 × 34 × 5 × 7 × 19 × 23 = 2.477.790
22 × 34 × 5 × 7 × 13 × 19 = 2.800.980
22 × 33 × 5 × 13 × 19 × 23 = 3.067.740
34 × 7 × 13 × 19 × 23 = 3.221.127
22 × 34 × 5 × 7 × 13 × 23 = 3.390.660
2 × 32 × 5 × 7 × 13 × 19 × 23 = 3.579.030
22 × 33 × 7 × 13 × 19 × 23 = 4.294.836
2 × 34 × 5 × 13 × 19 × 23 = 4.601.610
22 × 34 × 5 × 7 × 19 × 23 = 4.955.580
33 × 5 × 7 × 13 × 19 × 23 = 5.368.545
2 × 34 × 7 × 13 × 19 × 23 = 6.442.254
22 × 32 × 5 × 7 × 13 × 19 × 23 = 7.158.060
22 × 34 × 5 × 13 × 19 × 23 = 9.203.220
2 × 33 × 5 × 7 × 13 × 19 × 23 = 10.737.090
22 × 34 × 7 × 13 × 19 × 23 = 12.884.508
34 × 5 × 7 × 13 × 19 × 23 = 16.105.635
22 × 33 × 5 × 7 × 13 × 19 × 23 = 21.474.180
2 × 34 × 5 × 7 × 13 × 19 × 23 = 32.211.270
22 × 34 × 5 × 7 × 13 × 19 × 23 = 64.422.540

64.422.540 y 0 tienen 480 divisores comunes:
1; 2; 3; 4; 5; 6; 7; 9; 10; 12; 13; 14; 15; 18; 19; 20; 21; 23; 26; 27; 28; 30; 35; 36; 38; 39; 42; 45; 46; 52; 54; 57; 60; 63; 65; 69; 70; 76; 78; 81; 84; 90; 91; 92; 95; 105; 108; 114; 115; 117; 126; 130; 133; 135; 138; 140; 156; 161; 162; 171; 180; 182; 189; 190; 195; 207; 210; 228; 230; 234; 247; 252; 260; 266; 270; 273; 276; 285; 299; 315; 322; 324; 342; 345; 351; 364; 378; 380; 390; 399; 405; 414; 420; 437; 455; 460; 468; 483; 494; 513; 532; 540; 546; 567; 570; 585; 598; 621; 630; 644; 665; 684; 690; 702; 741; 756; 780; 798; 805; 810; 819; 828; 855; 874; 897; 910; 945; 966; 988; 1.026; 1.035; 1.053; 1.092; 1.134; 1.140; 1.170; 1.196; 1.197; 1.235; 1.242; 1.260; 1.311; 1.330; 1.365; 1.380; 1.404; 1.449; 1.482; 1.495; 1.539; 1.596; 1.610; 1.620; 1.638; 1.710; 1.729; 1.748; 1.755; 1.794; 1.820; 1.863; 1.890; 1.932; 1.995; 2.052; 2.070; 2.093; 2.106; 2.185; 2.223; 2.268; 2.340; 2.394; 2.415; 2.457; 2.470; 2.484; 2.565; 2.622; 2.660; 2.691; 2.730; 2.835; 2.898; 2.964; 2.990; 3.059; 3.078; 3.105; 3.220; 3.276; 3.420; 3.458; 3.510; 3.588; 3.591; 3.705; 3.726; 3.780; 3.933; 3.990; 4.095; 4.140; 4.186; 4.212; 4.347; 4.370; 4.446; 4.485; 4.788; 4.830; 4.914; 4.940; 5.130; 5.187; 5.244; 5.265; 5.382; 5.460; 5.670; 5.681; 5.796; 5.980; 5.985; 6.118; 6.156; 6.210; 6.279; 6.555; 6.669; 6.916; 7.020; 7.182; 7.245; 7.371; 7.410; 7.452; 7.695; 7.866; 7.980; 8.073; 8.190; 8.372; 8.645; 8.694; 8.740; 8.892; 8.970; 9.177; 9.315; 9.660; 9.828; 10.260; 10.374; 10.465; 10.530; 10.764; 10.773; 11.115; 11.340; 11.362; 11.799; 11.970; 12.236; 12.285; 12.420; 12.558; 13.041; 13.110; 13.338; 13.455; 14.364; 14.490; 14.742; 14.820; 15.295; 15.390; 15.561; 15.732; 16.146; 16.380; 17.043; 17.290; 17.388; 17.940; 17.955; 18.354; 18.630; 18.837; 19.665; 20.007; 20.748; 20.930; 21.060; 21.546; 21.735; 22.230; 22.724; 23.598; 23.940; 24.219; 24.570; 25.116; 25.935; 26.082; 26.220; 26.676; 26.910; 27.531; 28.405; 28.980; 29.484; 30.590; 30.780; 31.122; 31.395; 32.292; 33.345; 34.086; 34.580; 35.397; 35.910; 36.708; 36.855; 37.260; 37.674; 39.330; 39.767; 40.014; 40.365; 41.860; 43.092; 43.470; 44.460; 45.885; 46.683; 47.196; 48.438; 49.140; 51.129; 51.870; 52.164; 53.820; 53.865; 55.062; 56.511; 56.810; 58.995; 61.180; 62.244; 62.790; 65.205; 66.690; 68.172; 70.794; 71.820; 73.710; 75.348; 77.805; 78.660; 79.534; 80.028; 80.730; 82.593; 85.215; 86.940; 91.770; 93.366; 94.185; 96.876; 100.035; 102.258; 103.740; 107.730; 110.124; 113.022; 113.620; 117.990; 119.301; 121.095; 125.580; 130.410; 133.380; 137.655; 140.049; 141.588; 147.420; 153.387; 155.610; 159.068; 161.460; 165.186; 169.533; 170.430; 176.985; 183.540; 186.732; 188.370; 198.835; 200.070; 204.516; 215.460; 226.044; 233.415; 235.980; 238.602; 242.190; 247.779; 255.645; 260.820; 275.310; 280.098; 282.555; 306.774; 311.220; 330.372; 339.066; 340.860; 353.970; 357.903; 376.740; 397.670; 400.140; 412.965; 460.161; 466.830; 477.204; 484.380; 495.558; 511.290; 550.620; 560.196; 565.110; 596.505; 613.548; 678.132; 700.245; 707.940; 715.806; 766.935; 795.340; 825.930; 847.665; 920.322; 933.660; 991.116; 1.022.580; 1.073.709; 1.130.220; 1.193.010; 1.238.895; 1.400.490; 1.431.612; 1.533.870; 1.651.860; 1.695.330; 1.789.515; 1.840.644; 2.147.418; 2.300.805; 2.386.020; 2.477.790; 2.800.980; 3.067.740; 3.221.127; 3.390.660; 3.579.030; 4.294.836; 4.601.610; 4.955.580; 5.368.545; 6.442.254; 7.158.060; 9.203.220; 10.737.090; 12.884.508; 16.105.635; 21.474.180; 32.211.270 y 64.422.540
de los cuales 7 factores primos: 2; 3; 5; 7; 13; 19 y 23

Divisores, divisores comunes, el máximo común divisor, MCD

  • Si el número "t" es un divisor del número "a", entonces en la descomposición en factores primos de "t" solo encontraremos factores primos que también ocurren en la descomposición en factores primos de "a".
  • Si hay exponentes involucrados, el valor máximo de un exponente para cualquier base de una potencia que se encuentra en la descomposición en factores primos de "t" es como máximo igual al exponente de la misma base que está involucrado en la descomposición en factores primos de "a".
  • Nota: 23 = 2 × 2 × 2 = 8. Decimos que 2 fue elevado a la potencia de 3, o más simple, 2 elevado a 3. En este ejemplo, 3 es el exponente y 2 es la base. El exponente indica cuántas veces se multiplica la base por sí misma. 23 es la potencia y 8 es el valor de la potencia.
  • Por ejemplo, 12 es un divisor de 120 - el resto es cero al dividir 120 por 12.
  • Miremos la descomposición en factores primos de ambos números y observemos las bases y los exponentes de los factores primos que ocurren en la descomposición en factores primos de ambos números:
  • 12 = 2 × 2 × 3 = 22 × 3
  • 120 = 2 × 2 × 2 × 3 × 5 = 23 × 3 × 5
  • 120 contiene todos los factores primos de 12, y todos los exponentes de sus bases son mayores que los de 12.
  • Si "t" es un divisor común de "a" y "b", entonces la descomposición en factores primos de "t" contiene solo los factores primos comunes involucrados en las descomposición en factores primos de "a" y "b".
  • Si hay exponentes involucrados: el valor máximo de un exponente de cualquier base de una potencia que se encuentra en la factorización prima del número "t" - es como máximo igual al mínimo de los exponentes de la misma base que ocurre en el descomposición en factores primos de los números "a" y "b".
  • Por ejemplo, 12 es el divisor común de 48 y 360.
  • El resto es cero al dividir 48 o 360 por 12.
  • Aquí están las descomposición en factores primos de los tres números, 12, 48 y 360:
  • 12 = 22 × 3
  • 48 = 24 × 3
  • 360 = 23 × 32 × 5
  • Ten en cuenta que 48 y 360 tienen más divisores: 2, 3, 4, 6, 8, 12, 24. Entre ellos, 24 es el máximo común divisor, mcd, de 48 y 360.
  • El máximo común divisor, mcd, de dos números, "a" y "b", es el producto de todos los factores primos comunes involucrados en las descomposición en factores primos de "a" y "b", tomados por los exponentes más bajos.
  • Con base en esta regla, se calcula el máximo común divisor, mcd, de varios números, como se muestra en el siguiente ejemplo...
  • mcd (1.260; 3.024; 5.544) = ?
  • 1.260 = 22 × 32
  • 3.024 = 24 × 32 × 7
  • 5.544 = 23 × 32 × 7 × 11
  • Los factores primos comunes son:
  • 2 - su exponente más bajo es: min. (2; 3; 4) = 2
  • 3 - su exponente más bajo es: min. (2; 2; 2) = 2
  • mcd (1.260; 3.024; 5.544) = 22 × 32 = 252
  • Números que son primos entre sí (coprimos, primos relativos):
  • Si dos números "a" y "b" no tienen más divisores comunes que 1, mcd (a; b) = 1, entonces los números "a" y "b" se llaman primos entre sí (coprimos, primos relativos).
  • Divisores del MCD
  • Si "a" y "b" no son primos entre sí, entonces todo divisor común de "a" y "b" es también un divisor del máximo común divisor, mcd, de "a" y "b".