Método 1. La descomposición en factores primos:
La descomposición en factores primos de un número (descomposición factorial) = descomponer el número como un producto (multiplicación) de uno o varios números primos.
6.162 = 2 × 3 × 13 × 79
6.162 no es un numero primo sino un numero compuesto.
4.204 = 22 × 1.051
4.204 no es un numero primo sino un numero compuesto.
* Los números naturales que son divisibles solo por 1 y por ellos mismos se llaman números primos. Un número primo tiene exactamente dos divisores: el 1 y él mismo.
* Un número compuesto es un número natural que tiene al menos un divisor diferente de 1 y él mismo.
Calcular el máximo común divisor:
Multiplica todos los factores primos comunes, tomados por sus exponentes más pequeños.
mcd (6.162; 4.204) = 2
mcd (6.162; 4.204) = 2
Los dos números tienen factores primos comunes.
Método 2. El algoritmo de Euclides:
Este algoritmo implica el proceso de dividir números y calcular los residuos.
'a' y 'b' son los dos numeros naturales, 'a' >= 'b'.
Divida 'a' por 'b' y obtenga el resto de la operación, 'r'.
Si 'r' = 0, nos detenemos. 'b' = el mcd de 'a' y 'b'.
Si no: Reemplace ('a' por 'b') y ('b' por 'r'). Volver al paso anterior.
Paso 1. Dividir el número mayor por el menor:
6.162 ÷ 4.204 = 1 + 1.958
Paso 2. Divide el número más pequeño por el resto de la operación anterior:
4.204 ÷ 1.958 = 2 + 288
Paso 3. Divida el resto del paso 1 por el resto del paso 2:
1.958 ÷ 288 = 6 + 230
Paso 4. Divida el resto del paso 2 por el resto del paso 3:
288 ÷ 230 = 1 + 58
Paso 5. Divida el resto del paso 3 por el resto del paso 4:
230 ÷ 58 = 3 + 56
Paso 6. Divida el resto del paso 4 por el resto del paso 5:
58 ÷ 56 = 1 + 2
Paso 7. Divida el resto del paso 5 por el resto del paso 6:
56 ÷ 2 = 28 + 0
En este paso, el resto es cero, entonces paramos:
2 es el número que buscábamos: el último resto distinto de cero.
Este es el máximo común divisor.
El máximo común divisor:
mcd (6.162; 4.204) = 2
mcd (6.162; 4.204) = 2