3.286 y 8.675 son primos entre sí (coprimos)... si:
- Si no hay otro número que no sea 1 que divida a ambos números sin resto. O...
- O, en otras palabras, si su máximo común divisor, mcd, es 1.
Calcular el máximo común divisor, mcd, de los números
Método 1. La descomposición en factores primos:
La descomposición en factores primos de un número (descomposición factorial) = descomponer el número como un producto (multiplicación) de uno o varios números primos.
3.286 = 2 × 31 × 53
3.286 no es un numero primo sino un numero compuesto.
8.675 = 52 × 347
8.675 no es un numero primo sino un numero compuesto.
- Los números naturales que solo son divisibles por 1 y por ellos mismos se llaman números primos. Un número primo tiene exactamente dos divisores: el 1 y él mismo.
- Un número compuesto es un número natural que tiene al menos un divisor diferente de 1 y él mismo.
Calcular el máximo común divisor, mcd:
Multiplica todos los factores primos comunes de los dos números, tomados por sus exponentes más pequeños.
Paso 1. Dividir el número mayor por el menor:
8.675 ÷ 3.286 = 2 + 2.103
Paso 2. Divide el número más pequeño por el resto de la operación anterior:
3.286 ÷ 2.103 = 1 + 1.183
Paso 3. Divida el resto del paso 1 por el resto del paso 2:
2.103 ÷ 1.183 = 1 + 920
Paso 4. Divida el resto del paso 2 por el resto del paso 3:
1.183 ÷ 920 = 1 + 263
Paso 5. Divida el resto del paso 3 por el resto del paso 4:
920 ÷ 263 = 3 + 131
Paso 6. Divida el resto del paso 4 por el resto del paso 5:
263 ÷ 131 = 2 + 1
Paso 7. Divida el resto del paso 5 por el resto del paso 6:
131 ÷ 1 = 131 + 0
En este paso, el resto es cero, entonces paramos:
1 es el número que buscábamos: el último resto distinto de cero.
Este es el máximo común divisor.
mcd (3.286; 8.675) = 1
¿Son los números 3.286 y 8.675 primos entre sí (coprimos, primos relativos)? Sí.
mcd (3.286; 8.675) = 1