3.924 y 7.059 no son primos relativos... si:
- Si hay al menos un número distinto de 1 que divide a los dos números sin resto. O...
- O, en otras palabras, si su máximo común divisor, mcd, no es 1.
Calcular el máximo común divisor, mcd, de los números
Método 1. La descomposición en factores primos:
La descomposición en factores primos de un número (descomposición factorial) = descomponer el número como un producto (multiplicación) de uno o varios números primos.
3.924 = 22 × 32 × 109
3.924 no es un numero primo sino un numero compuesto.
7.059 = 3 × 13 × 181
7.059 no es un numero primo sino un numero compuesto.
- Los números naturales que solo son divisibles por 1 y por ellos mismos se llaman números primos. Un número primo tiene exactamente dos divisores: el 1 y él mismo.
- Un número compuesto es un número natural que tiene al menos un divisor diferente de 1 y él mismo.
Calcular el máximo común divisor, mcd:
Multiplica todos los factores primos comunes de los dos números, tomados por sus exponentes más pequeños.
Paso 1. Dividir el número mayor por el menor:
7.059 ÷ 3.924 = 1 + 3.135
Paso 2. Divide el número más pequeño por el resto de la operación anterior:
3.924 ÷ 3.135 = 1 + 789
Paso 3. Divida el resto del paso 1 por el resto del paso 2:
3.135 ÷ 789 = 3 + 768
Paso 4. Divida el resto del paso 2 por el resto del paso 3:
789 ÷ 768 = 1 + 21
Paso 5. Divida el resto del paso 3 por el resto del paso 4:
768 ÷ 21 = 36 + 12
Paso 6. Divida el resto del paso 4 por el resto del paso 5:
21 ÷ 12 = 1 + 9
Paso 7. Divida el resto del paso 5 por el resto del paso 6:
12 ÷ 9 = 1 + 3
Paso 8. Divida el resto del paso 6 por el resto del paso 7:
9 ÷ 3 = 3 + 0
En este paso, el resto es cero, entonces paramos:
3 es el número que buscábamos: el último resto distinto de cero.
Este es el máximo común divisor.
mcd (3.924; 7.059) = 3 ≠ 1
¿Son los números 3.924 y 7.059 primos entre sí (coprimos, primos relativos)? No.
mcd (3.924; 7.059) = 3 ≠ 1