6.117 y 4.541 son primos entre sí (coprimos)... si:
- Si no hay otro número que no sea 1 que divida a ambos números sin resto. O...
- O, en otras palabras, si su máximo común divisor, mcd, es 1.
Calcular el máximo común divisor, mcd, de los números
Método 1. La descomposición en factores primos:
La descomposición en factores primos de un número (descomposición factorial) = descomponer el número como un producto (multiplicación) de uno o varios números primos.
6.117 = 3 × 2.039
6.117 no es un numero primo sino un numero compuesto.
4.541 = 19 × 239
4.541 no es un numero primo sino un numero compuesto.
- Los números naturales que solo son divisibles por 1 y por ellos mismos se llaman números primos. Un número primo tiene exactamente dos divisores: el 1 y él mismo.
- Un número compuesto es un número natural que tiene al menos un divisor diferente de 1 y él mismo.
Calcular el máximo común divisor, mcd:
Multiplica todos los factores primos comunes de los dos números, tomados por sus exponentes más pequeños.
Paso 1. Dividir el número mayor por el menor:
6.117 ÷ 4.541 = 1 + 1.576
Paso 2. Divide el número más pequeño por el resto de la operación anterior:
4.541 ÷ 1.576 = 2 + 1.389
Paso 3. Divida el resto del paso 1 por el resto del paso 2:
1.576 ÷ 1.389 = 1 + 187
Paso 4. Divida el resto del paso 2 por el resto del paso 3:
1.389 ÷ 187 = 7 + 80
Paso 5. Divida el resto del paso 3 por el resto del paso 4:
187 ÷ 80 = 2 + 27
Paso 6. Divida el resto del paso 4 por el resto del paso 5:
80 ÷ 27 = 2 + 26
Paso 7. Divida el resto del paso 5 por el resto del paso 6:
27 ÷ 26 = 1 + 1
Paso 8. Divida el resto del paso 6 por el resto del paso 7:
26 ÷ 1 = 26 + 0
En este paso, el resto es cero, entonces paramos:
1 es el número que buscábamos: el último resto distinto de cero.
Este es el máximo común divisor.
mcd (6.117; 4.541) = 1
¿Son los números 6.117 y 4.541 primos entre sí (coprimos, primos relativos)? Sí.
mcd (4.541; 6.117) = 1