6.733 y 67 son primos entre sí (coprimos)... si:
- Si no hay otro número que no sea 1 que divida a ambos números sin resto. O...
- O, en otras palabras, si su máximo común divisor, mcd, es 1.
Calcular el máximo común divisor, mcd, de los números
Método 1. La descomposición en factores primos:
La descomposición en factores primos de un número (descomposición factorial) = descomponer el número como un producto (multiplicación) de uno o varios números primos.
6.733 es un número primo y no se puede descomponer en otros factores primos.
67 es un número primo y no se puede descomponer en otros factores primos.
- Los números naturales que solo son divisibles por 1 y por ellos mismos se llaman números primos. Un número primo tiene exactamente dos divisores: el 1 y él mismo.
- Un número compuesto es un número natural que tiene al menos un divisor diferente de 1 y él mismo.
Calcular el máximo común divisor, mcd:
Multiplica todos los factores primos comunes de los dos números, tomados por sus exponentes más pequeños.
Paso 1. Dividir el número mayor por el menor:
6.733 ÷ 67 = 100 + 33
Paso 2. Divide el número más pequeño por el resto de la operación anterior:
67 ÷ 33 = 2 + 1
Paso 3. Divida el resto del paso 1 por el resto del paso 2:
33 ÷ 1 = 33 + 0
En este paso, el resto es cero, entonces paramos:
1 es el número que buscábamos: el último resto distinto de cero.
Este es el máximo común divisor.
mcd (6.733; 67) = 1
¿Son los números 6.733 y 67 primos entre sí (coprimos, primos relativos)? Sí.
mcd (67; 6.733) = 1