9.779 y 762 no son primos relativos... si:
- Si hay al menos un número distinto de 1 que divide a los dos números sin resto. O...
- O, en otras palabras, si su máximo común divisor, mcd, no es 1.
Calcular el máximo común divisor, mcd, de los números
Método 1. La descomposición en factores primos:
La descomposición en factores primos de un número (descomposición factorial) = descomponer el número como un producto (multiplicación) de uno o varios números primos.
9.779 = 7 × 11 × 127
9.779 no es un numero primo sino un numero compuesto.
762 = 2 × 3 × 127
762 no es un numero primo sino un numero compuesto.
- Los números naturales que solo son divisibles por 1 y por ellos mismos se llaman números primos. Un número primo tiene exactamente dos divisores: el 1 y él mismo.
- Un número compuesto es un número natural que tiene al menos un divisor diferente de 1 y él mismo.
Calcular el máximo común divisor, mcd:
Multiplica todos los factores primos comunes de los dos números, tomados por sus exponentes más pequeños.
Paso 1. Dividir el número mayor por el menor:
9.779 ÷ 762 = 12 + 635
Paso 2. Divide el número más pequeño por el resto de la operación anterior:
762 ÷ 635 = 1 + 127
Paso 3. Divida el resto del paso 1 por el resto del paso 2:
635 ÷ 127 = 5 + 0
En este paso, el resto es cero, entonces paramos:
127 es el número que buscábamos: el último resto distinto de cero.
Este es el máximo común divisor.
mcd (9.779; 762) = 127 ≠ 1
¿Son los números 9.779 y 762 primos entre sí (coprimos, primos relativos)? No.
mcd (762; 9.779) = 127 ≠ 1