1.203 y 1.644 no son primos relativos... si:
- Si hay al menos un número distinto de 1 que divide a los dos números sin resto. O...
- O, en otras palabras, si su máximo común divisor, mcd, no es 1.
Calcular el máximo común divisor, mcd, de los números
Método 1. La descomposición en factores primos:
La descomposición en factores primos de un número (descomposición factorial) = descomponer el número como un producto (multiplicación) de uno o varios números primos.
1.203 = 3 × 401
1.203 no es un numero primo sino un numero compuesto.
1.644 = 22 × 3 × 137
1.644 no es un numero primo sino un numero compuesto.
- Los números naturales que solo son divisibles por 1 y por ellos mismos se llaman números primos. Un número primo tiene exactamente dos divisores: el 1 y él mismo.
- Un número compuesto es un número natural que tiene al menos un divisor diferente de 1 y él mismo.
Calcular el máximo común divisor, mcd:
Multiplica todos los factores primos comunes de los dos números, tomados por sus exponentes más pequeños.
Paso 1. Dividir el número mayor por el menor:
1.644 ÷ 1.203 = 1 + 441
Paso 2. Divide el número más pequeño por el resto de la operación anterior:
1.203 ÷ 441 = 2 + 321
Paso 3. Divida el resto del paso 1 por el resto del paso 2:
441 ÷ 321 = 1 + 120
Paso 4. Divida el resto del paso 2 por el resto del paso 3:
321 ÷ 120 = 2 + 81
Paso 5. Divida el resto del paso 3 por el resto del paso 4:
120 ÷ 81 = 1 + 39
Paso 6. Divida el resto del paso 4 por el resto del paso 5:
81 ÷ 39 = 2 + 3
Paso 7. Divida el resto del paso 5 por el resto del paso 6:
39 ÷ 3 = 13 + 0
En este paso, el resto es cero, entonces paramos:
3 es el número que buscábamos: el último resto distinto de cero.
Este es el máximo común divisor.
mcd (1.203; 1.644) = 3 ≠ 1
¿Son los números 1.203 y 1.644 primos entre sí (coprimos, primos relativos)? No.
mcd (1.203; 1.644) = 3 ≠ 1