2.222 y 9.049 son primos entre sí (coprimos)... si:
- Si no hay otro número que no sea 1 que divida a ambos números sin resto. O...
- O, en otras palabras, si su máximo común divisor, mcd, es 1.
Calcular el máximo común divisor, mcd, de los números
Método 1. La descomposición en factores primos:
La descomposición en factores primos de un número (descomposición factorial) = descomponer el número como un producto (multiplicación) de uno o varios números primos.
2.222 = 2 × 11 × 101
2.222 no es un numero primo sino un numero compuesto.
9.049 es un número primo y no se puede descomponer en otros factores primos.
- Los números naturales que solo son divisibles por 1 y por ellos mismos se llaman números primos. Un número primo tiene exactamente dos divisores: el 1 y él mismo.
- Un número compuesto es un número natural que tiene al menos un divisor diferente de 1 y él mismo.
Calcular el máximo común divisor, mcd:
Multiplica todos los factores primos comunes de los dos números, tomados por sus exponentes más pequeños.
Paso 1. Dividir el número mayor por el menor:
9.049 ÷ 2.222 = 4 + 161
Paso 2. Divide el número más pequeño por el resto de la operación anterior:
2.222 ÷ 161 = 13 + 129
Paso 3. Divida el resto del paso 1 por el resto del paso 2:
161 ÷ 129 = 1 + 32
Paso 4. Divida el resto del paso 2 por el resto del paso 3:
129 ÷ 32 = 4 + 1
Paso 5. Divida el resto del paso 3 por el resto del paso 4:
32 ÷ 1 = 32 + 0
En este paso, el resto es cero, entonces paramos:
1 es el número que buscábamos: el último resto distinto de cero.
Este es el máximo común divisor.
mcd (2.222; 9.049) = 1
¿Son los números 2.222 y 9.049 primos entre sí (coprimos, primos relativos)? Sí.
mcd (2.222; 9.049) = 1