5.126 y 9.004 no son primos relativos... si:
- Si hay al menos un número distinto de 1 que divide a los dos números sin resto. O...
- O, en otras palabras, si su máximo común divisor, mcd, no es 1.
Calcular el máximo común divisor, mcd, de los números
Método 1. La descomposición en factores primos:
La descomposición en factores primos de un número (descomposición factorial) = descomponer el número como un producto (multiplicación) de uno o varios números primos.
5.126 = 2 × 11 × 233
5.126 no es un numero primo sino un numero compuesto.
9.004 = 22 × 2.251
9.004 no es un numero primo sino un numero compuesto.
- Los números naturales que solo son divisibles por 1 y por ellos mismos se llaman números primos. Un número primo tiene exactamente dos divisores: el 1 y él mismo.
- Un número compuesto es un número natural que tiene al menos un divisor diferente de 1 y él mismo.
Calcular el máximo común divisor, mcd:
Multiplica todos los factores primos comunes de los dos números, tomados por sus exponentes más pequeños.
Paso 1. Dividir el número mayor por el menor:
9.004 ÷ 5.126 = 1 + 3.878
Paso 2. Divide el número más pequeño por el resto de la operación anterior:
5.126 ÷ 3.878 = 1 + 1.248
Paso 3. Divida el resto del paso 1 por el resto del paso 2:
3.878 ÷ 1.248 = 3 + 134
Paso 4. Divida el resto del paso 2 por el resto del paso 3:
1.248 ÷ 134 = 9 + 42
Paso 5. Divida el resto del paso 3 por el resto del paso 4:
134 ÷ 42 = 3 + 8
Paso 6. Divida el resto del paso 4 por el resto del paso 5:
42 ÷ 8 = 5 + 2
Paso 7. Divida el resto del paso 5 por el resto del paso 6:
8 ÷ 2 = 4 + 0
En este paso, el resto es cero, entonces paramos:
2 es el número que buscábamos: el último resto distinto de cero.
Este es el máximo común divisor.
mcd (5.126; 9.004) = 2 ≠ 1
¿Son los números 5.126 y 9.004 primos entre sí (coprimos, primos relativos)? No.
mcd (5.126; 9.004) = 2 ≠ 1