6.298 y 1.117 son primos entre sí (coprimos)... si:
- Si no hay otro número que no sea 1 que divida a ambos números sin resto. O...
- O, en otras palabras, si su máximo común divisor, mcd, es 1.
Calcular el máximo común divisor, mcd, de los números
Método 1. La descomposición en factores primos:
La descomposición en factores primos de un número (descomposición factorial) = descomponer el número como un producto (multiplicación) de uno o varios números primos.
6.298 = 2 × 47 × 67
6.298 no es un numero primo sino un numero compuesto.
1.117 es un número primo y no se puede descomponer en otros factores primos.
- Los números naturales que solo son divisibles por 1 y por ellos mismos se llaman números primos. Un número primo tiene exactamente dos divisores: el 1 y él mismo.
- Un número compuesto es un número natural que tiene al menos un divisor diferente de 1 y él mismo.
Calcular el máximo común divisor, mcd:
Multiplica todos los factores primos comunes de los dos números, tomados por sus exponentes más pequeños.
Paso 1. Dividir el número mayor por el menor:
6.298 ÷ 1.117 = 5 + 713
Paso 2. Divide el número más pequeño por el resto de la operación anterior:
1.117 ÷ 713 = 1 + 404
Paso 3. Divida el resto del paso 1 por el resto del paso 2:
713 ÷ 404 = 1 + 309
Paso 4. Divida el resto del paso 2 por el resto del paso 3:
404 ÷ 309 = 1 + 95
Paso 5. Divida el resto del paso 3 por el resto del paso 4:
309 ÷ 95 = 3 + 24
Paso 6. Divida el resto del paso 4 por el resto del paso 5:
95 ÷ 24 = 3 + 23
Paso 7. Divida el resto del paso 5 por el resto del paso 6:
24 ÷ 23 = 1 + 1
Paso 8. Divida el resto del paso 6 por el resto del paso 7:
23 ÷ 1 = 23 + 0
En este paso, el resto es cero, entonces paramos:
1 es el número que buscábamos: el último resto distinto de cero.
Este es el máximo común divisor.
mcd (6.298; 1.117) = 1
¿Son los números 6.298 y 1.117 primos entre sí (coprimos, primos relativos)? Sí.
mcd (1.117; 6.298) = 1