795 y 5.139 no son primos relativos... si:
- Si hay al menos un número distinto de 1 que divide a los dos números sin resto. O...
- O, en otras palabras, si su máximo común divisor, mcd, no es 1.
Calcular el máximo común divisor, mcd, de los números
Método 1. La descomposición en factores primos:
La descomposición en factores primos de un número (descomposición factorial) = descomponer el número como un producto (multiplicación) de uno o varios números primos.
795 = 3 × 5 × 53
795 no es un numero primo sino un numero compuesto.
5.139 = 32 × 571
5.139 no es un numero primo sino un numero compuesto.
- Los números naturales que solo son divisibles por 1 y por ellos mismos se llaman números primos. Un número primo tiene exactamente dos divisores: el 1 y él mismo.
- Un número compuesto es un número natural que tiene al menos un divisor diferente de 1 y él mismo.
Calcular el máximo común divisor, mcd:
Multiplica todos los factores primos comunes de los dos números, tomados por sus exponentes más pequeños.
Paso 1. Dividir el número mayor por el menor:
5.139 ÷ 795 = 6 + 369
Paso 2. Divide el número más pequeño por el resto de la operación anterior:
795 ÷ 369 = 2 + 57
Paso 3. Divida el resto del paso 1 por el resto del paso 2:
369 ÷ 57 = 6 + 27
Paso 4. Divida el resto del paso 2 por el resto del paso 3:
57 ÷ 27 = 2 + 3
Paso 5. Divida el resto del paso 3 por el resto del paso 4:
27 ÷ 3 = 9 + 0
En este paso, el resto es cero, entonces paramos:
3 es el número que buscábamos: el último resto distinto de cero.
Este es el máximo común divisor.
mcd (795; 5.139) = 3 ≠ 1
¿Son los números 795 y 5.139 primos entre sí (coprimos, primos relativos)? No.
mcd (795; 5.139) = 3 ≠ 1