8.231 y 4.762 son primos entre sí (coprimos)... si:
- Si no hay otro número que no sea 1 que divida a ambos números sin resto. O...
- O, en otras palabras, si su máximo común divisor, mcd, es 1.
Calcular el máximo común divisor, mcd, de los números
Método 1. La descomposición en factores primos:
La descomposición en factores primos de un número (descomposición factorial) = descomponer el número como un producto (multiplicación) de uno o varios números primos.
8.231 es un número primo y no se puede descomponer en otros factores primos.
4.762 = 2 × 2.381
4.762 no es un numero primo sino un numero compuesto.
- Los números naturales que solo son divisibles por 1 y por ellos mismos se llaman números primos. Un número primo tiene exactamente dos divisores: el 1 y él mismo.
- Un número compuesto es un número natural que tiene al menos un divisor diferente de 1 y él mismo.
Calcular el máximo común divisor, mcd:
Multiplica todos los factores primos comunes de los dos números, tomados por sus exponentes más pequeños.
Paso 1. Dividir el número mayor por el menor:
8.231 ÷ 4.762 = 1 + 3.469
Paso 2. Divide el número más pequeño por el resto de la operación anterior:
4.762 ÷ 3.469 = 1 + 1.293
Paso 3. Divida el resto del paso 1 por el resto del paso 2:
3.469 ÷ 1.293 = 2 + 883
Paso 4. Divida el resto del paso 2 por el resto del paso 3:
1.293 ÷ 883 = 1 + 410
Paso 5. Divida el resto del paso 3 por el resto del paso 4:
883 ÷ 410 = 2 + 63
Paso 6. Divida el resto del paso 4 por el resto del paso 5:
410 ÷ 63 = 6 + 32
Paso 7. Divida el resto del paso 5 por el resto del paso 6:
63 ÷ 32 = 1 + 31
Paso 8. Divida el resto del paso 6 por el resto del paso 7:
32 ÷ 31 = 1 + 1
Paso 9. Divida el resto del paso 7 por el resto del paso 8:
31 ÷ 1 = 31 + 0
En este paso, el resto es cero, entonces paramos:
1 es el número que buscábamos: el último resto distinto de cero.
Este es el máximo común divisor.
mcd (8.231; 4.762) = 1
¿Son los números 8.231 y 4.762 primos entre sí (coprimos, primos relativos)? Sí.
mcd (4.762; 8.231) = 1