877 y 5.104 son primos entre sí (coprimos)... si:
- Si no hay otro número que no sea 1 que divida a ambos números sin resto. O...
- O, en otras palabras, si su máximo común divisor, mcd, es 1.
Calcular el máximo común divisor, mcd, de los números
Método 1. La descomposición en factores primos:
La descomposición en factores primos de un número (descomposición factorial) = descomponer el número como un producto (multiplicación) de uno o varios números primos.
877 es un número primo y no se puede descomponer en otros factores primos.
5.104 = 24 × 11 × 29
5.104 no es un numero primo sino un numero compuesto.
- Los números naturales que solo son divisibles por 1 y por ellos mismos se llaman números primos. Un número primo tiene exactamente dos divisores: el 1 y él mismo.
- Un número compuesto es un número natural que tiene al menos un divisor diferente de 1 y él mismo.
Calcular el máximo común divisor, mcd:
Multiplica todos los factores primos comunes de los dos números, tomados por sus exponentes más pequeños.
Paso 1. Dividir el número mayor por el menor:
5.104 ÷ 877 = 5 + 719
Paso 2. Divide el número más pequeño por el resto de la operación anterior:
877 ÷ 719 = 1 + 158
Paso 3. Divida el resto del paso 1 por el resto del paso 2:
719 ÷ 158 = 4 + 87
Paso 4. Divida el resto del paso 2 por el resto del paso 3:
158 ÷ 87 = 1 + 71
Paso 5. Divida el resto del paso 3 por el resto del paso 4:
87 ÷ 71 = 1 + 16
Paso 6. Divida el resto del paso 4 por el resto del paso 5:
71 ÷ 16 = 4 + 7
Paso 7. Divida el resto del paso 5 por el resto del paso 6:
16 ÷ 7 = 2 + 2
Paso 8. Divida el resto del paso 6 por el resto del paso 7:
7 ÷ 2 = 3 + 1
Paso 9. Divida el resto del paso 7 por el resto del paso 8:
2 ÷ 1 = 2 + 0
En este paso, el resto es cero, entonces paramos:
1 es el número que buscábamos: el último resto distinto de cero.
Este es el máximo común divisor.
mcd (877; 5.104) = 1
¿Son los números 877 y 5.104 primos entre sí (coprimos, primos relativos)? Sí.
mcd (877; 5.104) = 1